MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

I B.Tech I Semester (MR20- 2020-21 Admitted Students)

I Mid Examination (Question bank)

Subject : BASIC ELECTRICAL & ELECTRONICS ENGINEERING Branch: CSE, IT, DS, CS, AIML, IOT

Subject Code:

Max.Marks:

Q.No.	Question	Bloom's Taxonomy	CO
		Level	
1	Find the equivalent resistance for the following circuit?	Applying	1
	OR		
2.	By using Thevinin's theorem Determine the current through 5 ohm resistor? 10V + 120 $300 + 100$ 500	Applying	1
3.	Explain superposition theorem with an example.	Understanding	1
	OR		
4	State and explain maximum transfer theorem	Understanding	1
5	Derive Star to Delta conversion equations and Delta to Star conversion equations.	Evaluating	1
	OR		
6	For the following circuit shown in figure calculate the current in the various branches	Analyze	1

MODULE:1

	$1 = 2 \text{ Ohms}$ $+ \frac{1}{6} \text{ Ohms}$ $1 = 1_2$ 4 Ohms 8 Ohms		
7.	Explain Resistor, Inductor and Capacitor in series and parallel	Understanding	1
	OR		
8	Write down KVL and KCL and Explain with Example.	Understanding	1

MODULE-II

Q.No.	Question	Bloom's Taxnomy Level	СО
1	Find Average value, RMS value, Form factor and Peak factor of sinusoidal current.	Applying	2
	OR		
2.	A series circuit consumes 2000W at 0.5 leading power factor when connected to 230 V , 50 Hz AC supply . Calculate (a) Current (b) KVA (c) KVAR	Applying	2
3.	Explain the terms (i) Maximum value (ii) Form factor (iii) Peak factor (iv)RMS value.(v) Average value	Understanding	
	OR		
4	Distinguish between the analysis of single phase pure inductor and pure Capacitor .	Understanding	2
5	Draw and explain the analysis of single phase RLC series circuit.	Applying	2
	OR		
6	An ac circuit consists of a pure resistance of 10 ohms and is connected across an AC supply of 230 V 50Hz. Calculated (a) RMS value of current (b) power (c) power factor (d) write down the equation for voltage	Applying	2

	and current.		
7.	An alternating voltage of 80+j60 V is applied to a circuit and the current flowing is 4- j2 A . Find the (a) impedance (b) phase angle (c) power factor (d) power consumed.	Applying	2
	OR		
8	Draw and explain the analysis of single phase RL series circuit.	Applying	2

MODULE-III

Q.No.	Question	Bloom's	CO
		Taxnomy Level	
1	Explain the following terms (i) Lenzs law (ii) Faradays law (iii)	Understanding	3
	Fleming Right hand rule		
	OR		
2	Explain the Constructional details of a DC Machines	Understanding	3
3	Explain the principle and operation of a DC generator.	Understanding	3
	OR		
4	Derive the equation for induced EME of a DC generator	Evoluting	
4	Derive the equation for induced Ewir of a DC generator.	Evaluating	
5	A 4-pole, DC generator has a useful flux per pole of 0.07 wb runs	Applying	3
	at 750 rpm. The armature winding is wave wounded with 252		
	conductors. Calculate the generated emf.		
	OR		
6	A 4-pole ,lap wound Dc generator has a useful flux of 0.07wb per	Applying	3
	pole. Calculate the generated EMF when it is rotated at a speed of		
	900rpm with the help of prime mover. Armature consists of 440		
	no. of conductors. Also calculate the generated emf if lap wound		
	armature is replaced by wave wound armature.		

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

Question Bank for I- BTECH SEM - MID-I

BRANCH : CSE , IT DS , CS, AMIL & IOT

SUBJECT : BASICS ELECTRICAL & ELECTRONICS ENGINEERING

Objective Questions

Vishbaffla around low is based on low of any entries of	r	ı
Kirchnoll's second law is based on law of conservation of	L]
charge		
memoritum		
monentum		
mass.	r	г
what is the relationship between the resistance and voltage when the current is kept	L	J
constant?		
liversely proportional		
Constant	r	ı
An ideal current source has	L]
Zana intermel registrance		
Zero internal resistance		
	г	1
An ideal voltage source should have	L]
Zero source resistance		
Infinite source resistance		
I erminal voltage is proportional to current		
Open-circuit voltage nearly equal to voltage of the load current	r	,
Identify the passive element among the following	l]
Voltage source		
current source		
inductor		
transistor	r	,
How much energy is stored by a 0.05µF capacitor with a voltage of 1000V?	l]
0.025		
0.05J		
5J 1004		
	r	,
The unit of power is	L]
Watt		
voit		
	Kirchhoff's second law is based on law of conservation of charge energy momentum mass. What is the relationship between the resistance and voltage when the current is kept constant? equal to inversely proportional directly proportional directly proportional constant An ideal current source has Infinite source resistance Zero internal resistance Zero voltage on no load Zero ripple An ideal voltage source should have Zero source resistance Infinite source resistance Terminal voltage is proportional to current Open-circuit voltage nearly equal to voltage of the load current Identify the passive element among the following Voltage source current source inductor transistor How much energy is stored by a 0.05µF capacitor with a voltage of 1000V? 0.025J 0.05J 5J 100J The unit of power is Watt Volt	Kirchhoff's second law is based on law of conservation of [charge energy momentum mass. What is the relationship between the resistance and voltage when the current is kept [constant? equal to inversely proportional directly proportional constant An ideal current source has I Infinite source resistance Zero internal resistance Zero voltage on no load Zero ripple An ideal voltage source should have [Infinite source resistance Infinite source Infinite Infinite Infinite source Infinite Infini

- (C) Current
- (D) None

8	State Kirchoff's current Law	ſ	1
(A)	sum of all positive currents is equal to sum of all negative currents.		-
(B)	sum of all positive emfs is equal to the sum of all negative emfs taken in order		
(C)	sum of all powers in a circuit		
(D)	sum of all emfs in a circuit		
9	Define Kirchoff's voltage law	ſ	1
(A)	algebraic sum of emf's - algebraic sum of voltage drops = 0	L	1
(\mathbf{R})	algebraic sum of emf's + algebraic sum of voltage drops = 0		
(\mathbf{C})	7ero		
(\mathbf{C})	algebraic sum of currents		
10	A terminal where more than two branches met is called:	ſ	1
(Δ)	Node	L	1
(\mathbf{R})	Terminus		
(\mathbf{D})	Loop		
(\mathbf{C})	None of the above		
(D) 11	Ohm's I aw states that current through a conductor under conditions is	Г	ı
11	proportional to potential difference across the conductor	L	1
(Λ)	constant pressure		
(\mathbf{R})	constant pressure temperature and volume		
(\mathbf{D})	constant volume		
(\mathbf{C})	constant temperature		
(D) 12	In a parallel circuit, the relation between different currents is	ſ	1
(Δ)	$Z_{\text{ero}} = I_1 + I_2 + I_3 + I_4 +$	L	1
(\mathbf{R})	$I_{rr} = I_1 \times I_2 \times I_3 + I_4 + I_5 + I_4 + I_5 + I_5 \times I_5 + I$		
(\mathbf{D})	$I_1 - I_1 \land I_2 \land I_3$ $I_1 + I_2 + I_2 + = infinity$		
(\mathbf{C})	$I_1 + I_2 + I_3 + I_4 + I_6 + $		
(D) 13	$\mathbf{r}_1 = \mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 + \mathbf{r}_4$ What are the units of voltage current and Resistance respectively	ſ	1
(A)	Ohms Volts Amperes	L	L
(\mathbf{R})	Volts Farads Amperes		
(\mathbf{C})	Henries Volts Amperes		
(D)	Volts, Amperes, Ohms		
14	What is the rule followed for kirchoff's voltage law?	ſ	1
(A)	mesh rule	L	-
(B)	current rule		
(C)	loop rule		
(D)	wheat stone rule		
15	In a parallel circuit, the total resistance of circuitas the number of resistors	ſ	1
	connected in parallel	-	-
(A)	increases, increases		
(B)	increases, decreases		
(C)	decreases, decreases		
(D)	decreases, increases		
16	In a series circuit, the total resistance of circuitas the number of resistors	[]
	connected in series		
(A)	increases, increases		
(B)	increases, decreases		

(C)	decreases, decreases		
(D)	decreases, increases	-	-
17	The mass of proton is roughly how many times the mass of an electron?	[]
(A)	184,000		
(B)	184,00		
(C)	1840		
(D)	184		
18	One kilowatt hour of electrical energy is the same as	[]
(A)	$36 \times 10^{\circ}$ watts		
(B)	$36 \times 10^{\circ} \text{ ergs}$		
(C)	36×10^5 joules		
(D)	$36 \ge 10^5 \text{ B.T.U.}$		
19	Which of the following is not the same as watt?	[]
(A)	joule/sec		
(B)	amperes/volt		
(C)	amperes x volts		
(D)	$(amperes)^2 x ohm$		
20	A circuit contains two un-equal resistances in parallel	[]
(A)	current is same in both		
(B)	large current flows in larger resistor		
(C)	potential difference across each is same		
(D)	smaller resistance has smaller conductance		
21	Conductance is expressed in terms of	[]
(A)	ohm / m		
(B)	m / ohm		
(C)	mho / m		
(D)	mho		
22	We have three resistances of values 2 Ω , 3 Ω and 6 Ω . Which of following	[]
	combination will give an effective resistance of 4 Ω		
(A)	All the three resistances in parallel		
(B)	2 Ω resistance in series with parallel combination of 3 Ω and 6 Ω resistance		
(C)	3 Ω resistance in series with parallel combination of 2 Ω and 6 Ω resistance		
(D)	6 Ω resistance in series with parallel combination of 2 Ω and 3 Ω resistance		
23	The unit of electrical conductivity is	[]
(A)	mho / metre		
(B)	mho / sq. m		
(C)	ohm / metre		
(D)	ohm / sq. m.		
24	The resistance of a 100 W, 200 V lamp is	[]
(A)	100 ohm		
(B)	200 ohm		
(C)	400 ohm		
(D)	1600 ohm		
25	Three 3 ohm resistors are connected to form a triangle. What is the resistance	[]
	between any two of the corners		
(Λ)	2 / 4 ohms		

(A) 3/4 ohms

(B)	3 ohms		
(C)	4.5 ohms		
(D)	4/3 ohm		
26	A resistance of 5 ohms is further drawn so that its length becomes double. Its	[]
	resistance will now be		
(A)	5 ohms		
(B)	7.5 ohms		
(C)	10 ohms		
(D)	20 ohms		
27	Specific resistance of a substance is measured in	ſ	1
(A)	ohms	L	1
(B)	mhos		
(\mathbf{C})	ohm-cm		
(\mathbf{D})	cm/ohm		
28	Δ wire of resistance R has it length and cross-section both doubled. Its resistance	r	1
20	will become	L	1
(Λ)	4 P		
(A) (D)	4 K 2 D		
(\mathbf{D})	2 K P		
(\mathbf{C})			
(D) 20	\mathbf{K} / 4.	г	ı
49	The value of supply voltage for 500 w ,5 onin load is	L]
(A)			
(B)	100 V		
(C)	50 V		
(D)	10V		
30	100 resistors of 100 ohms each arc connected in parallel. Their equivalent	L	J
	resistances will be		
(A)	10,000 ohms		
(B)	100 ohms		
(C)	1 ohm		
(D)	1/ 10000 ohm		
31	Kirchhoff's first law is based on law of conservation of	[]
(A)	charge		
(B)	energy		
(C)	momentum		
(D)	mass.		
32	The unit of voltage is	[]
(A)	Watt		
(B)	Volt		
(C)	Current		
(D)	None		
33	The resistance of a 10 Ohm & 20 Ohm are connected in series then the equivalent	ſ	1
	resistance is	Ľ	-
(A)	30 ohm		
(B)	20 ohm		
(\mathbf{C})	10 ohm		
$\langle - \rangle$	- • • • • • • • • • • • • • • • • • • •		

(D) 34	6.66 ohm The resistance of a 10 Ohm & 20 Ohm are connected in parallel then the equivalent	Г	1
34	resistance is	L	1
(Δ)	30 ohm		
(\mathbf{R})	3 33 ohm		
(\mathbf{D})	10 ohm		
(\mathbf{C})	6 66 ohm		
35	The unit of resistor is	ſ	1
(Δ)	Watt	L	1
(\mathbf{R})	Volt		
(\mathbf{C})	ohm		
(\mathbf{C})	None		
36	The resistance of a 3 33 Ω hm & 3 33 Ω hm are connected in series then the	ſ	1
50	equivalent resistance is	L	1
(Λ)	3 33 ohm		
(\mathbf{A})	6.66 ohm		
(\mathbf{D})	0.00 ohm		
(\mathbf{C})	9.99 Ollill O shee		
(D) 27	U UIIII The registered of a 5 Ohm & 5 Ohm are connected in perallel then the equivalent	г	ı
51	registence of a 5 Onin & 5 Onin are connected in parallel then the equivalent	L]
(Λ)	0.5 ohm		
(A)	0.5 onm 2.5 shu		
(B)	3.5 Onm		
(C)	1.5 ohm		
(D)	2.5 ohm	r	г
38	The unit of current is	l]
(A)	Watts		
(B)	Volts		
(C)	Amp		
(D)	None	r	,
39	In a parallel circuit, the current passing through the element is	l]
(A)	same		
(B)	infinity		
(C)	different		
(D)	none	-	-
40	In a parallel circuit, the voltage across the element is	L	J
(A)	infinity		
(B)	same		
(C)	different		
(D)	none		
41	In a series circuit, the current passing through the element is	[]
(A)	same		
(B)	infinity		
(C)	different		
(D)	none		
42	In a series circuit, the voltage across the element is	[]
(A)	same		

(B)	infinity		
(C)	different		
(D)	none	r	-
43	The equivalent resistance in star circuit is to equivalent resistance in delta	L	Ţ
(A)	equal		
(B)	infinity		
(C)	different		
(D)	none		
44	The equivalent resistance in delta circuit is to equivalent resistance in star	[]
(A)	different		
(B)	infinity		
(C)	equal		
(D)	none		
45	Capacitance store the energy in the form of	[]
(A)	Electrostatic field		
(B)	Electromagnetic field		
(C)	uniform field		
(D)	none		
46	inductance store the energy in the form of	[]
(A)	Electrostatic field		
(B)	Electromagnetic field		
(C)	uniform field		
(D)	none		
47	Which one is the energy storage element	ſ	1
(A)	inductor	-	-
(B)	resistor		
(C)	diode		
(D)	none		
48	Which one is the energy storage element	ſ	1
(A)	diode		-
(B)	resistor		
(C)	Capacitor		
(D)	none		
4 9	A circuit contain one energy storage element is called	ſ	1
(A)	Active circuit	L	
(B)	Passive circuit		
(C)	Linear circuit		
(D)	Non linear circuit		
50	A circuit contain no energy storage elements is called	Г	1
(A)	Active circuit	L	L
(\mathbf{B})	Passive circuit		
(\mathbf{C})	Linear circuit		
(D)	Non linear circuit		
51	RMS Value of sinusoidal Voltage is	Г	1
(A)	$Vm/\sqrt{2}$	L	L
(\mathbf{D})			
(в)	V		

(C)	VI /sinφ		
(D)	VI/coso		
52	Average Value of sinusoidal Voltage is	[]
(A)	$Vm/\sqrt{2}$		
(B)	$2Vm/\pi$		
(C)	VI /sind		
(D)	VI/coso		
53	Form factor of sinusoidal Voltage is	[1
(A)	1.11	-	-
(B)	2		
(C)	3		
(D)	4		
54	Peak factor of sinusoidal Voltage is	[]
(A)	1.11		
(B)	2		
(C)	$\sqrt{2}$		
(D)	4		
55	In symmetrical wave RMS Value is calculated for	[1
(A)	one Alternation	L	
(B)	Full Cycle		
(C)	Both		
(D)	None		
56	For Half wave Rectifier Second alternation is	[1
(A)	ZERO	-	-
(B)	Positive		
(C)	Negative		
(D)	None		
57	50HZ Means	[]
(A)	1 cycle/sec		
(B)	2 Cycles/sec		
(C)	50 Cycles/sec		
(D)	50 Cycles/min		
58	If $E_1 = Asin\omega t$ and $E_2 = Asin(\omega t - \theta)$, then	[]
(A)	E1& E2 are in phase		
(B)	E2 lags E1by θ		
(C)	E1 lags E2by θ		
(D)	E2 lags E1by 90°		
59	The equation for 25 cycles current sine wave having rms value of 30 amps, will be	[]
(A)	42.4sin50πt		
(B)	42.4sin25πt		
(C)	30sin25πt		
(D)	30sin25πt		
60	The rms value of sinusoidal voltage wave $V = 200 \sin\omega t$, is	[]
(A)	$200/\sqrt{2}$		
(B)	100/v2 V		
(C)	200√2 V		

(D)	$100\sqrt{2} V$		
61	The value of supply voltage for 400 W, 4 Ω load is	[]
(A)	40 V		
(B)	20 V		
(C)	100 V		
(D)	1600 V		
62	Peak Factor gives	[]
(A)	Peak Value To R.M.S. Value		
(B)	Average Value To Peak Value		
(C)	R.M.S. Value To Average Value		
(D)	R.M.S. Value To Peak Value		
63	For a Frequency of 200Hz, The Time Period Will be	[]
(A)	0.05 S		
(B)	0.005 S		
(C)	0.0005 S		
(D)	0.5 S		
64	For a Sine Wave With Peak Value I _{max} the R.M.S. Value Is	[]
(A)	0.5		
(B)	0.707		
(C)	0.9		
(D)	1.414 Imax		
65	energy stored in inductor is in the form of	[]
(A)	electrical field		
(B)	both		
(C)	none		
(D)	magnetic field		
"	If the area of hystometic loop of a material is large, the hystometic loss in this material	г	1
00	will be	L	1
(A)	zero		
(B)	small		
(C)	medium		
(D)	large		
67	How many evalues does a sine wave so through in $10s$ when its frequency is 6007	г	1
U/	10 evolos	L	1
(\mathbf{A})	10 Cycles		
(D)	600 evelos		
(\mathbf{U})			
(D)	U Cycles If the peak we we have voltage is $10W$ what is the real to real $10V$	г	r
00	If the peak value of a sine wave voltage is 10v, what is the peak to peak value?	L]

(A)	20V		
(B)	10V		
(C)	5V		
(D)	7.07V		
69	If peak value of sine wave voltage is 5V, then rms value is	[]
(A)	0.707V		
(B)	3.535 V		
(C)	5V		
(D)	1.17V		
70	A phasor represents	Γ	1
(A)	Magnitude of the quantity	L	1
(\mathbf{R})	width of the quantity		
(\mathbf{C})	Magnitude & direction of the quantity		
(\mathbf{C})	Phase angle of quantity		
(D) 71	The form factor is the ratio of	г	1
(Λ)		L]
(\mathbf{A})			
(B)	r.m.s. value to average value		
(\mathbf{C})	average value to r.m.s. value		
(D)	none		
72	Relationship between frequency and speed	L]
(A)	F=pn/120		
(B)	P=fn/120		
(C)	F=pn*120		
(D)	P=fn*120		
73	The standard form of an alternating voltage is given by	[]
(A)	$e = E_M \cos \theta$		
(B)	$e=E_M SIN \theta$		
(C)	$e = E_M TAN \theta$		
(D)	$e = E_M COT\theta$		
74	The standard form of an alternating current is given by	[1
(A)	i=I _M COS θ		
(B)	$i=I_M \cos \theta$		
(C)	$i=I_M \cos \theta$		
(D)	$i=I_M SIN \theta$		
75	Relationship between ANGULAR VELOCITY and FREOUENCY	ſ	1
(A)	$\omega = 2\pi f$	L	
(B)	$\omega = 2\pi$		
(\mathbf{C})	$\omega = \pi f$		
(\mathbf{D})	$\omega = 4\pi f$		
(D) 76	The unit of Impedance is	Г	1
(Δ)	Mbo	L	1
(\mathbf{R})	Ohm		
(\mathbf{D})	Volt		
(\mathbf{U})	A mpore		
(U) 77	The unit of Admitteness is	r	1
11		L]

(A)	Mho		
(B)	Ohm		
(C)	Volt		
(D)	Ampere		
78	Unit of Active Power	[]
(A)	VA		
(B)	VAR		
(C)	Watts		
(D)	None		
79	Unit of Reactive Power	ſ	1
(A)	VA	-	_
(B)	VAR		
(C)	Watts		
(D)	None		
80	Unit of Apparent Power	ſ	1
(A)	VA		
(B)	VAR		
(\mathbf{C})	Watts		
(D)	None		
81	In an RL Series circuit when current takes reference point, then the voltage is	ſ	1
(A)	In phase, Lead		
(B)	In phase Lag		
(\mathbf{C})	Lag. Lead		
(D)	Lead, Lag		
82	In an RL Series circuit the value of phase difference is	ſ	1
(A)	0 Ŭ	L	L
(\mathbf{R})	ດດິ		
(\mathbf{D})	90 180°		
(\mathbf{C})	160°		
(D) 83	Instantaneous power Linductor is proportional to the	Г	1
(Δ)	Product of the instantaneous current and rate of change of current	L	1
(\mathbf{D})	rioduct of the instantaneous current and rate of change of current		
(D)	Square of instantaneous current		
(C)	Square of the rate of change of current		
(D)	Temperature of the inductor		
84	In case of Inductive circuit, Frequency is Proportional to the		
	inductance (L) or inductive reactance (X_{I})	[]
(Λ)	Directly		
(\mathbf{R})	Inversely		
(\mathbf{D})	Faual		
(\mathbf{C})	No Effect		
85	In case of Inductive circuit. Frequency is Proportional to the Current	ſ	1
(A)	Directly	L	1
(\mathbf{B})	Inversely		
(\mathbf{C})	Equal		
$\langle - \rangle$	—		

(D)	No Effect		
86	In case of capacitive circuit, Frequency isProportional to the	г	1
	Capacitance (C) or capacitive reactance (X_C)	L	1
(A)	Directly		
(B)	Inversely		
(C)	Equal		
(D)	No Effect		
87	In a Capacitive circuit, when Capacitance (C) increases, (the circuit current also	Г	1
	increases), then the circuit power factor?	L	1
(A)	Increases		
(B)	Decreases		
(C)	Remain Same		
(D)	None of the above		
88	If Current and Voltage are 90 Degree Out of Phase, Then The Power (P) will be	[]
(A)	Infinite		
(B)	Maximum		
(C)	Minimum		
(D)	Zero		
89	Power Factor ($\cos \theta$) =?	[]
(A)	KW/KVA		
(B)	R/Z		
(C)	The Cosine of angle between Current and voltage		
(D)	All of the above		
90	The relationship between Impedance (Z) and Admittance(Y) is?	[]
(A)	Z=1/Y		
(B)	Z=1+Y		
(C)	Z=1-Y		
(D)	$Z=Y^2$		
91	From the impedance triangle, the power factor is	[]
(A)	RZ		
(B)	Z/R		
(C)	R/Z		
(D)	R+Z		
92	Susceptance is the reciprocal of	[]
(A)	Resistance		
(B)	Reactance		
(C)	Impedance		
(D)	Conductance		
93	Unit of Susceptance is	[]
(A)	Ohm		
(B)	Ampere		
(C)	Mho		
(D)	Volt-Ampere		
94	In a R-L-C circuit	[]
(A)	Exchange of power takes place between inductor and supply line		
(B)	Exchange of power takes place between capacitor and supply line		

(C) (D)	Exchange of power does not take place between resistance and the supply line All above are correct		
95	The apparent power drawn by an A.C. circuit is 10 kVA and active power is 8 kW.	r	ı
	The reactive power in the circuit is	L]
(A)	4 kVAR		
(B)	6 kVAR		
(C)	8 kVAR		
(D)	16 kVAR		
96	A phasor is	[]
(A)	a line which represents the magnitude and phase of an alternating quantity		
(B)	a line representing the magnitude and direction of an alternating quantity		
(C)	a coloured tag for distinction between different phases of a 3-phase supply		
(D)	an instrument used for measuring phases of an unbalanced 3-phase load		
97	When AC flows through a pure capacitance then the current	[]
(A)	leads the emf by 90°		
(B)	leads the emf by - 90°		
(C)	lags the emf by 90°		
(D)	is in phase with emf		
98	The power dissipated in a pure capacitor is	[]
(A)	zero		
(B)	proportional to applied voltage		
(C)	proportional to the value of capacitance		
(D)	both (B) and (C) above		
99	The voltage triangle in an RLC circuit, the power factor is	[]
(A)	V/V _R		
(B)	V _R /V		
(C)	V _L -V _C /V		
(D)	V_{C} - V_{I}/V		
100	The power dissipated in a pure inductor is	ſ	1
(A)	proportional to applied voltage	L	
(B)	zero		
(C)	proportional to the value of capacitance		
(D)	both (B) and (C) above.		
101	e.m.f can be generated	ſ	1
(A)	by moving a coil in magnetic field	-	-
(B)	when two different metals are joined		
(C)	when light falls on materials		
(D)	All of above		
102	When current flows through a conductorfield is set up along length of conductor	[]
(A)	Electric		
(B)	magnetic		
(C)	both a & b		
(D)	None		
103	Flux linkage with a coil is given by	[]
(A)	NØ		
(B)	Ø		

(C)	Ø		
(D)	NONE		
104	Induced emf in a coil is given by	[]
(A)	$-N(dt/d\emptyset)$		
(B)	-NØ		
(C)	-NdØ		
(D)	$-N(d\emptyset/dt)$		
105	When magnet is in motion relative to a coil, induced emf does not depend upon	[]
(A)	Pole strength		
(B)	motion of magnet		
(C)	resistance of coil		
(D)	Number of turns		
106	Lenz's law is a consequence of the law of conservation of	[]
(A)	Energy		
(B)	charge		
(C)	induced emf		
(D)	induced current		
107	For a coil self inductance is given by	[]
(A)	IØ		
(B)	NØ/I		
(C)	NI/Ø		
(D)	NØI		
108	Which opposes the flux is known as	[]
(A)	Resistance		
(B)	Reluctance		
(C)	Conductance		
(D)	permanence		
109	The process by which voltage is induced in a conductor whenever there is relative	[]
	motion between conductor and magnetic field is		
(A)	Electromagnetic induction		
(B)	magnetization		
(C)	demagnetization		
(D)	All of the above	-	-
110	Which law states that the polarity of induced emf opposes cause that produce it	[]
(A)	Faraday's law		
(B)	gauss law		
(C)	ohm's law		
(D)	Lenz Law	-	-
111	The armature of D.C. generator is laminated to	L	J
(A)	reduce the bulk		
(B)	Insulate the core		
(C)	To reduce eddy current loss		
(D)	None of the above	-	_
112	According to Fleming's right-hand rule for finding the direction of induced e.m.f.,	[]
	when middle finger points in the direction of induced e.m.f., forefinger will point in		
	the direction of		

- (A) lines of force
- (B) motion of the conductors
- (C) either of the above

(D) None of the above

- **113** Fleming's right-hand rule regarding direction of induced e.m.f., correlates [] (A) magnetic flux, direction of current flow and resultant force **(B)** magnetic flux, direction of motion and the direction of e.m.f. induced (C) magnetic field strength, induced voltage and current magnetic flux, direction of force and direction of motion of conductor (D) 114 While applying Fleming's right-hand rule the thumb points towards 1 ſ direction of induced e.m.f. (A) (B) direction of flux (C) direction of motion of the conductor if forefinger points in the direction of generated e.m.f. (D) direction of motion of conductor, if forefinger points along the lines of flux Functions of commutator in d.c. machines are [] 115 To facilitate the collection of current from armature conductors (A) (B) To convert internally developed induced emf to unidirectional emf To produce unidirectional torque in case of motors (C) (D) All of these 116 For the construction of the armature of a d.c. machine, the best suited material is [] (A) Cast iron (B) Silicon steel Carbon (C) (D) All of these Which of the following part is used in construction of DC machine but not in AC 117 [] Armature Winding (A) (B) Field winding Commutator (C) (D) Shaft If a DC motor is connected to AC supply what will happen then? 118 [] (A) Not run (B) Burn Run at normal speed (C) Run at extremely low speed (D) The armature of DC motor is laminated to _____ 119 [] (A) To reduce mass
- (B) To reduce hysteresis loss

(C)	To reduce eddy current loss		
(D)	To reduce inductance		
120	Which of the following is the best braking method?	[]
(A)	Friction		
(B)	Electromechanical action		
(C)	Eddy-currents		
(D)	Electric braking		
121	Electrical braking of any variety becomes less effective as	[]
(A)	Speed increases		
(B)	Speed decreases		
(C)	Independent of speed		
(D)	Depends on supply voltage		
122	In dynamic braking, when braking is applied system acts as	[]
(A)	Freely running machine		
(B)	Motor with slow speed		
(C)	Generator		
(D)	Motor with same speed in opposite direction		
123	The speed in d.c. machine can be measured by using	[]
(A)	Tachometer		
(B)	Ammeter		
(C)	Voltmeter		
(D)	Anemometer		
124	While carrying out brake tests if the belt snaps, then the motor will	[]
(A)	Rotate at reduced speed but in forward direction		
(B)	Rotate at increased speed but in forward direction		
(C)	Rotate at reduced speed but in backward direction		
(D)	Rotate at increased speed but in backward direction		
125	The rotational or stray losses includes	[]
(A)	Iron losses only		
(B)	Iron losses, friction and windage losses		
$\langle \mathbf{\alpha} \rangle$			

- (C) Iron losses, copper losses, friction and windage losses(D) None of these